MATHEMATICS

HIGHER LEVEL
PAPER 3 - DISCRETE MATHEMATICS
Thursday 15 May 2014 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

The weighted graph K, representing the travelling costs between five customers, has the following adjacency table.

	A	B	C	D	E
A	0	1	6	7	4
B	1	0	9	8	10
C	6	9	0	11	3
D	7	8	11	0	12
E	4	10	3	12	0

(a) Draw the graph K.
(b) Starting from customer D , use the nearest-neighbour algorithm, to determine an upper bound to the travelling salesman problem for K.
(c) By removing customer A, use the method of vertex deletion, to determine a lower bound to the travelling salesman problem for K.
2. [Maximum mark: 23]
(a) Consider the integers $a=871$ and $b=1157$, given in base 10 .
(i) Express a and b in base 13 .
(ii) Hence show that $\operatorname{gcd}(a, b)=13$.
(b) A list L contains $n+1$ distinct positive integers. Prove that at least two members of L leave the same remainder on division by n.
(c) Consider the simultaneous equations

$$
\begin{aligned}
4 x+y+5 z & =a \\
2 x+z & =b \\
3 x+2 y+4 z & =c
\end{aligned}
$$

where $x, y, z \in \mathbb{Z}$.
(i) Show that 7 divides $2 a+b-c$.
(ii) Given that $a=3, b=0$ and $c=-1$, find the solution to the system of equations modulo 2.
(d) Consider the set P of numbers of the form $n^{2}-n+41, n \in \mathbb{N}$.
(i) Prove that all elements of P are odd.
(ii) List the first six elements of P for $n=0,1,2,3,4,5$.
(iii) Show that not all elements of P are prime.
3. [Maximum mark: 10]
(a) Draw a spanning tree for
(i) the complete graph, K_{4};
(ii) the complete bipartite graph, $K_{4,4}$.
(b) Prove that a simple connected graph with n vertices, where $n>1$, must have two vertices of the same degree.
(c) Prove that every simple connected graph has at least one spanning tree.
4. [Maximum mark: 17]
(a) (i) Write down the general solution of the recurrence relation $u_{n}+2 u_{n-1}=0, n \geq 1$.
(ii) Find a particular solution of the recurrence relation $u_{n}+2 u_{n-1}=3 n-2, n \geq 1$, in the form $u_{n}=A n+B$, where $A, B \in \mathbb{Z}$.
(iii) Hence, find the solution to $u_{n}+2 u_{n-1}=3 n-2, n \geq 1$ where $u_{1}=7$.
(b) Find the solution of the recurrence relation $u_{n}=2 u_{n-1}-2 u_{n-2}, n \geq 2$, where $u_{0}=2$, $u_{1}=2$. Express your solution in the form $2^{f(n)} \cos (g(n) \pi)$, where the functions f and $g \operatorname{map} \mathbb{N}$ to \mathbb{R}.

